2.1 Answer Key

Practice 2.1-2-1:

Answer the following questions and find zeros of the function.

$$f(x) = 2x^2 - 16x$$

a) What is the greatest common factor?

$2 \cdot x \cdot x -$	$16 \cdot x$
$2 \cdot x x - 8$	$3(2 \cdot x)$

Thus the greates common factor is 2x

b) What is the factor form?

Thus the factor form is 2x(x-8)

c) What are x-values?

$$2x = 0$$
 $x - 8 = 0$
 $x_1 = 0$ $x_2 = 8$

Thus x values are x = 0, x = 8

Practice 2.1-2-2:

Answer the following questions and find zeros of the function.

$$f(x) = x^2 + 3x$$

a) What is the greatest common factor?

x + 3x

Thus the greates common factor is *x*

b) What is the factor form?

Thus the factor form is x(x+3)

c) What are x-values?

$$x = 0$$
 $x + 3 = 0$
 $x_1 = 0$ $x_2 = -3$

Thus x values are x = 0, x = -3

Practice 2.1-2-3:

Find zeros of the function.

$$f(x) = x^2 + 8x + 15$$

- 1. Check the equation it should be in the expanded (standard) form: $f(x) = ax^2 + bx + c$. Yes, it is in the expanded (standard) form: $f(x) = ax^2 + bx + c$.
- 2. Identify the values of a, b, and c.

a=1, b=8, c=15

3. Multiply a and c and use the AC method.

ac=15

4. Find two numbers such as:

#1·#2=ac, #1+ #2=b

ac is **positive**, both numbers in the pair must have the **same sign**.

Since #1+#2 = b, thus only 3 and 5 is possible.

- 5. Rewrite the function a = 1 rewrite as (x + #1)(x + #2)Since a = 1, then we can rewrite the function as (x + (+3))(x + (+5)) = 0 => (x + 3)(x + 5) = 0
- 6. Set each factor equal to 0 and solve the resulting equations using the zeroproduct property: B = 0, then A = 0 or B = 0

$$(x + 3)(x + 5) = 0$$

 $x + 3 = 0$ $x + 5 = 0$
 $x_1 = -3$ $x_2 = -5$

Answer: x = -3, and x = -5

Practice 2.1-2-4:

Find zeros of the function.

$$f(x) = x^2 - 2x - 15$$

- 1. Check the equation it should be in the expanded (standard) form: $f(x) = ax^2 + bx + c$. Yes, it is in the expanded (standard) form: $f(x) = ax^2 + bx + c$.
- 2. Identify the values of a, b, and c.

a=1, b=-2, c=-15

3. Multiply a and c and use the AC method.

ac=-15

4. Find two numbers such as:

ac is **negative**, the pair must consist of **one positive and one negative** number.

Since #1+#2 = b, thus only 3 and -5 is possible.

5. **Rewrite** the function

a = 1 rewrite as (x + #1)(x + #2)Since a = 1, then we can rewrite the function as (x + (+3))(x + (-5)) = 0 => (x + 3)(x - 5) = 0

6. Set each factor equal to 0 and solve the resulting equations using the zeroproduct property: B = 0, then A = 0 or B = 0

$$(x + 3)(x - 5) = 0$$

 $x + 3 = 0$ $x - 5 = 0$
 $x_1 = -3$ $x_2 = 5$

Answer: x = -3, and x = 5

Practice 2.1-2-5:

Find zeros of the function.

$$f(x) = 3x^2 + 10x - 8$$

- 1. Check the equation it should be in the expanded (standard) form: $f(x) = ax^2 + bx + c$. Yes, it is in the expanded (standard) form: $f(x) = ax^2 + bx + c$.
- 2. Identify the values of a, b, and c.

a=3, b=10, c=-8

3. Multiply a and c and use the AC method.

ac=-24

		ac=24		
4.	Find two numbers such as:	ac	=24	
	#1·#2=ac, #1+ #2=b	#1	#2	
	(AC graph)	1	24	
		-2	12	
	ac=-24	3	8	>
	#1 #2	4	6	-
	-2 12			
	b=10			

ac is **negative**, the pair must consist of **one positive and one negative** number.

Since #1+#2 = b, thus only -2 and 12 is possible.

- 5. Rewrite the function If a = 1 rewrite as (x + #1)(x + #2)If $a \neq 1$ rewrite as $(x + \frac{\#1}{a})(x + \frac{\#2}{a})$ Since $a \neq 1$, then we can rewrite the function as $\left(x + \left(\frac{-4}{10}\right)\right)\left(x + \left(\frac{-15}{10}\right)\right) = 0 => \left(x - \frac{2}{5}\right)\left(x - \frac{3}{2}\right) = 0$
- 6. Set each factor equal to 0 and solve the resulting equations using the zeroproduct property: B = 0, then A = 0 or B = 0

$$\left(x - \frac{2}{3}\right)\left(x + \frac{12}{3}\right) = 0$$

$$x - \frac{2}{3} = 0 \qquad x + \frac{12}{3} = 0$$

$$x_1 = \frac{2}{3} \qquad x + 4 = 0$$

$$x_2 = -4$$

Answer: $x = \frac{2}{3}$, and x = -4

Practice 2.1-3-1:

Find zeros of the function.

$$f(x) = 3x^2 - 75$$

The given a quadratic equation in the form $f(x) = ax^2 + c$, and ask for finding real zeros/x-intercept/solve for x, we set the equation equal to zero, then solve.

$$3x^{2} - 75 = 0$$
$$3x^{2} = 75$$
$$x^{2} = \frac{75}{3}$$

 $x^2 = 25$ Since $25 \ge$

0 we continue the rest steps

$$\sqrt{x^2} = \pm \sqrt{25}$$
$$x = \pm \sqrt{25}$$
$$x = \pm 5$$

Thus x = 5 and x = -5

Practice 2.1-3-2:

Find zeros of the function.

$$f(x) = 2(x-3)^2 - 8$$

The given a quadratic equation in the form $f(x) = a(x - h)^2 + k$, and ask for finding real zeros/x-intercept/solve for x, we set the equation equal to zero, then solve.

$$2(x-2)^{2} - 8 = 0$$

$$2(x-2)^{2} = 8$$

$$(x-2)^{2} = \frac{8}{2}$$

$$(x-2)^{2} = 4 \quad Since \ 4 \ge 0$$

0 we continue the rest steps

$$\sqrt{(x-2)^2} = \pm \sqrt{4}$$

$$x - 2 = \pm \sqrt{4}$$

$$x - 2 = \pm 2$$

$$x - 2 = 2$$

$$x - 2 = -2$$

$$x_1 = 4$$

$$x_2 = 0$$

Thus x = 4 and x = 0

Practice 2.1-4-1:

Find zeros of the function.

$$f(x) = 2x^2 - 8x + 5$$

1. Write in standard form $ax^2 + bx + c = 0$.

$$2x^2 - 8x + 5 = 0$$

- 2. Identify the variables a, b and c. $a = 2, \qquad b = -8, \qquad c = 5$
- 3. Substitute the variables a, b, and c into the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(2)(5)}}{2(2)}$$

4. Simplify. Find \triangle first: $b^2 - 4ac$

$$(-8)^2 - 4(2)(5) = 64 - 40 = 24$$

Since $\triangle > 0$, thus we have two answers, continue the rest.

$$x = \frac{8 \pm \sqrt{24}}{4}$$
$$x = \frac{8 \pm \sqrt{4 \cdot 6}}{4}$$
$$x = \frac{8 \pm 2\sqrt{6}}{4}$$
$$x = \frac{4 \pm \sqrt{6}}{2}$$

Simplify the fraction GCD: common divisor is 2

Answer: $x = \frac{4+\sqrt{6}}{2}, x = \frac{4-\sqrt{6}}{2}$