3.1 Answer Key

Practice 3.1-1-1:

Find its composite function. Suppose $f(x) = x^2 + 1$ and g(x) = x - 3

$$(f \circ g)(x)$$

Answer: e. $(f \circ g)(x) = 2x^2 - 12x + 18$

$$(f \circ g)(x) = f(g(x))$$

$$= f(x - 3) \qquad Use x - 3 replaces g(x)$$

$$= f(x - 3)$$

$$= 2(x - 3)^{2} \qquad Use x - 3 replaces x in$$

function f

=
$$2(x^2 - 6x + 9)$$
 Foil
= $2x^2 - 12x + 18$ simplify

Practice 3.1-2-1:

Find its composite function. Suppose $f(x) = x^2$ and g(x) = x + 2

$$(g \circ f)(-2)$$

Answer: $(g \circ f)(-2)=6$

$$(g \circ f)(-2)$$

 $(g \circ f)(-2) = g(f(-2))$ Use x^2 replaces f(x) and x=-2, thus

find f(-2)

$$f(-2) = (-2)^2 = 4$$

= g(4) Use 4 replaces f(-2) in function f

= (4) + 2 Solve

= 6

3.1 Answer Key

Practice 3.1-3-1:

Finding the domain of the composite function.

$$(g \circ f)(x)$$
 where $f(x) = \frac{5}{x-1}$ and $g(x) = \frac{4}{3x-2}$

Rewrite format: $(g \circ f)(x) = g(f(x))$

Step 1: find the domain of f(x).

$$f(x) = \frac{5}{x - 1}$$

If a function has fraction, such as $\frac{A}{B}$, then B \neq 0

Thus $x - 1 \neq 0$

$$x \neq 1$$

Step 2: Find g(f(x))

$$g(f(x)) = \frac{4}{3(\frac{5}{x-1}) - 2}$$

$$g(f(x)) = \frac{4}{\frac{15}{x-1} - 2}$$

Step 3: Find the domain of g(f(x))

Since
$$g(f(x)) = \frac{4}{\frac{15}{x-1} - 2}$$

If a function has fraction, such as $\frac{A}{B}$, then B \neq 0

$$\frac{15}{x-1} - 2 \neq 0$$

$$\frac{15}{x-1} \neq 2$$

 $(x-1)\frac{15}{x-1} \neq 2(x-1)$ Multiplying the denominator x-1 on both sides to cancel the denominator

 $15 \neq 2x - 2$ Adding 2 on both sides

$$17 \neq 2x$$

 $2x \neq 17$ Dividing 2 on both sides

$$X \neq \frac{17}{2}$$

Step 4: Overall, $x \neq 1$ and $x \neq \frac{17}{2}$, thus the real domain of g(f(x)) is

$$(-\infty,1)\cup(1,\frac{17}{2})\cup(\frac{17}{2},\infty)$$

3.1 Answer Key Page 3 of 3