3.3 Answer Key

Practice 3.3-1-1:

Identifying Exponential Functions: Identify the base of the exponential function. And find its value. Round to the nearest hundredth.

- a. $f(x) = -4^3$
- b. $f(x) = 4^3$
- c. $f(x) = (-4)^3$
- d. $f(x) = -4e^3$

Answer:

a. $f(x) = -4^3$ the base is 4.

$$f(x) = -\cdot 4 \cdot 4 \cdot 4 = -64$$

b. $f(x) = 4^3$ the base is 4.

$$f(x) = 4 \cdot 4 \cdot 4 = 64$$

- c. $f(x) = (-4)^3$ the base is -4. $f(x) = -4 \cdot -4 \cdot -4 = -64$
- d. $f(x) = -4e^3$ the base is e.

$$f(x) = -4 \cdot e \cdot e = -80.34214769 \dots \approx -80.34$$

Practice 3.3-2-1:

Graph the function.

$$f(x) = (\frac{1}{2})^x$$

a) Complete the table

x	f(x)	(x, y)
-1	$\left(\frac{1}{2}\right)^{-1} = 2$	(-1,2)
0	$\left(\frac{1}{2}\right)^0 = 1$	(0,1)
1	$\left(\frac{1}{2}\right)^1 = 0.5$	(1,0.5)

- b) Can we use x=-2? Yes
- c) Can we use other x values?

Yes

d) Any x value that we cannot use? Why.

X can be any number, since no restrictions apply. Since X is neither in the denominator nor under an even root, there are no domain restrictions

e) Select the correct graph.

Practice 3.3-3-1:

Solve Elementary Exponential Equations.

fraction and prime denominator

Step 1: To have $a^u = a^v$ We can reduce bases 9 to prime numbers and flip the fraction.

Based on the rule

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$
$$\frac{1}{3} = \left(\frac{1}{3}\right)^{1} = \left(\frac{3}{1}\right)^{-1} = 3^{-1}$$

Thus:

 $(3^2)^{x+3} = (3)^{-1}$

Simplify the equation by using rule

$$(b^{m})^{n} = b^{m \cdot n}$$

 $3^{(2)(x+3)} = (3)^{-1}$
 $3^{2x+6} = 3^{-1}$

Step 2: Since left and right bases are the same, we just need to compare the power.

Step 3: Solve for the variable.

$$2x = -1-6$$

 $2x = -7$
 $X = \frac{-7}{2}$