3.4 Answer Key

Practice 3.4-1-1:

Find the domain of giving the logarithmic function.

$$f(x) = \log_3(2x - 9)$$

1. Identify the variable:

In the expression $\log_b A$ the variable is **A**.

$$f(x) = \log_3(2x - 9)$$

2. Set the argument of the log greater than 0:

Since the argument of a logarithm must be positive, set: A>0

$$2x - 9 > 0$$

3. Solve for x:

Use algebra or logarithmic rules (if it's an equation) to find the value of **x** in the **A** that satisfies the expression or equation.

$$2x > 9$$
$$x > \frac{9}{2}$$

Domain: $(\frac{9}{2}, \infty)$

Practice 3.4-2-1:

Converting the following logarithmic equations to exponential equations.

a.
$$\log_4(R) = Q$$

b. $\log(W) = 5$
a. $\log_4(R) = Q$
to
 $4^Q = R$
b. $\log(W) = 5$

b.
$$\log(W) = 5$$

There is an invisible 10 since it is a common logarithm; thus, we can rewrite it as

Practice 3.4-2-2:

Converting the following exponential equations to logarithmic equations.

a. $7 = 21^x$ b. $4^w = 13$

a.
$$7 = 21^{x}$$

 $\log_{21}(7) = x$
b. $4^{w} = 13$

 $log_{4}(13) = W$

Practice 3.4-3-1:

Evaluating the logarithmic without using a calculator.

$$y = \log_3(\frac{1}{27})$$

Solution:

First, we rewrite the logarithm in exponential form: $3^y = \frac{1}{27}$. Next, we ask, "To what exponent must 3 be raised in order to get $\frac{1}{27}$?"

We know $3^3 = 27$, but what must we do to get the reciprocal, $\frac{1}{27}$? Recall from working with exponents that $b^{-a} = \frac{1}{b^a}$. We use this information to write

$$3^{-3} = \frac{1}{3^3}$$

= $\frac{1}{27}$

Therefore, $\log_3\left(\frac{1}{27}\right) = -3$.

Practice 3.4-4-1:

Solve the logarithmic equation.

$$\log_5(x-3) = 2$$

1. Translate to an exponential equation.

$$\log_5(x-3) = 2$$
$$5^2 = x - 3$$

2. Solve for x.

$$5^2 = x - 3$$

3.4 Answer Key

25 = x - 3 25 + 3 = x 28 = xx = 28

3. Use the domain to check the answer, select the one that fits the domain (x > 0).

Based on the domain rule, if $\log_b A$, A>0

Thus, we need to ensure x-3>0

Use x= -28 substitute x value,

28-3 =25, it is positive, which is greater than 0, thus the answer is

x = 28