3.6 Answer Key

Practice 3.6-1-1:

Solve the exponential equation.

 $5^x = 2^{x+1}$

1. Ensure the equation has exponential expressions on both sides with a coefficient of 1, or one side is an exponential expression with a coefficient of 1 and the other side is a constant.

Yes, so go to step 2.

2. Apply a logarithm (either In or log) to both sides of the equation.

$$\ln{(5^x)} = \ln{(2^{x+1})}$$

3. Use logarithmic properties to bring the exponent down in front.

Use: $\log_a M^r = r \log_a M$

$$(x)\ln(5) = (x+1)\ln(2)$$

4. Solve for x.

$$x \cdot \ln(3) = x \cdot \ln(2) + \ln(2) x \cdot \ln(3) - x \cdot \ln(2) = \ln(2) x \cdot (\ln(3) - \ln(2)) = \ln(2) \hline (\ln(3) - \ln(2)) = \frac{\ln(2)}{(\ln(3) - \ln(2))} \frac{x \cdot (\ln(3) - \ln(2))}{(\ln(3) - \ln(2))} = \frac{\ln(2)}{(\ln(3) - \ln(2))} \frac{x \cdot (\ln(3) - \ln(2))}{(\ln(3) - \ln(2))} = \frac{\ln(2)}{(\ln(3) - \ln(2))} x = \frac{\ln(2)}{\ln(3) - \ln(2)}$$
Hard to understand?
Let's try this:

$$x \cdot 3 - x \cdot 2 = 3x - 2x
So whoe we get the answer? We use 3-2=1 and keep the x. so that
$$3x - 2x = (3 - 2)x = x
Now, what if
$$x \cdot \ln(3) - x \cdot \ln(2)
We would have
(\ln(3) - \ln(2))x$$$$$$

Practice 3.6-2-1:

Solve the logarithm equation

$$ln(x) - ln(2 - x) = ln(3)$$

Step 1: Simplify Each Side: Make sure each side contains only one logarithmic expression each side.

there are **multiple logarithms** on one side, **condense** them:

$$ln(x) \bigcirc ln(2-x) = ln(3)$$

We see "-", thus use the **quotient rule**: $\log_a M - \log_a N = \log_a \left(\frac{M}{N}\right)$

$$\ln\left(\frac{x}{2-x}\right) = \ln\left(3\right)$$

Step 2: Drop the Logs (If Bases Match)

• After condensing, if both sides have **the same log base**, you can drop the logarithms and set the remaining expressions equal:

$$\ln\left(\frac{x}{2-x}\right) = \ln(3)$$
$$\ln\left(\frac{x}{2-x}\right) = \ln(3)$$
$$\frac{x}{2-x} = 3$$

Step 3: Solve for the Variable

• Solve the resulting algebraic equation for the unknown variable (e.g., x).

 $\frac{x}{2-x} = 3$ To cancel the denominator, we need to multiply both sides by the denominator. $(2-x)\frac{x}{2-x} = 3(2-x)$

$$x = 3(2 - x)$$
$$x = 6 - 3x)$$
$$x + 3x = 6$$
$$4x = 6$$
$$x = \frac{6}{4}$$
$$x = \frac{3}{2}$$

Step 4: Check Solutions

$$ln(x) - ln(2 - x) = ln(3)$$

Based on the domain, we must ensure x > 0, and 2 - x > 0, thus we can use a table to check.

Potential Answer	x	2-x
$\frac{3}{2}$	Positive value.	$2 - \frac{3}{2} = \frac{1}{2} = 0.5$ Positive value.

Thus $x = \frac{3}{2}$ is the answer.

Practice 3.6-2-2:

Solve the logarithm equation

$$\log_4(x) + \log_4(x - 3) = 1$$

Step 1: Simplify Logs: Make sure log side contains only one logarithmic expression.

If a logarithm has a coefficient,

use the product rule: $\log_a M + \log_a N = \log_a(MN)$

$$\log_4((x)(x-3)) = 1$$

Step 2: Arrow method.

• After condensing use arrow method convert it to exponential equation.

$$\log_{b} x = y \rightarrow x = b^{y}$$
$$\log_{4}((x)(x-3)) = 1$$
$$4^{1} = ((x)(x-3))$$

Step 3: Solve for the Variable

• Solve the resulting algebraic equation for the unknown variable (e.g., x).

$$4^{1} = ((x)(x - 3))$$

$$4 = x^{2} - 3x$$

$$0 = x^{2} - 3x - 4$$

$$0 = (x + 1)(x - 4)$$

$$x = -1, x = 4$$

Step 4: Check for Extraneous Solutions

$$\log_4(x) + \log_4(x - 3) = 1$$

Based on the domain, we must ensure x > 0, x - 3 > 0 thus we can use a table to check.

Potential Answer	x	<i>x</i> – 3
-1	-1 Negative value conflicts with the domain, so we exclude -1 as a solution.	
4	4 Positive value.✓	4-3=1 Positive value.

Thus x = 4 is the answer.