Solve the following equations for the unknown variable. #1-4 are one step equations because you only have undo one operation to isolate the variable.
- [latex]x\;-\;7\;=\;10[/latex]
- [latex]5\;+\;y\;=\;8[/latex]
- [latex]7x\;=\;-21[/latex]
- [latex]-3y\;=\;42[/latex]
-
- Are [latex]-3y\;=\;42[/latex] and [latex]-3\;+\;y\;=\;42[/latex] the same thing? Why or why not?
- How would you solve [latex]-3\;+\;y\;=\;42[/latex]?
- In your words, explain how part (b) was different from solving #4.
- Spot the error! Explain in your own words the mistake made and correct it.
[latex]8x\;=\;4[/latex]
[latex]\frac{8x}4=\frac44[/latex]
[latex]x\;=\;2[/latex] - Spot the error! Explain in your own words the mistake made and correct it.
[latex]8x\;=\;4[/latex]
[latex]\frac{8x}{8x}=\frac4{8x}[/latex]
[latex]x\;=\;\frac12[/latex]
#8-14 are multistep equations because you have undo more than one operation to isolate the variable.
- [latex]2x\;-\;5\;=\;7[/latex]
- [latex]2\;+\;3y\;=\;17[/latex]
- [latex]3\;-\;3x\;=\;9[/latex]
- [latex]1\;-\;y\;=\;-10[/latex]
- [latex]8\;-\;4y\;=\;18[/latex]
- [latex]-2y\;-\;4\;=\;-1[/latex]
- Solve [latex]5\;-\;6y\;=\;-7[/latex] two different ways.
- Start by subtracting 5 from both sides.
- Start by adding 6y to both sides.
- Which way do you prefer and why?
- Spot the errors! Explain in your own words the mistakes made and correct them.
[latex]3\;-\;4x\;=\;-9[/latex]
[latex]3\;-\;4x\;+\;9\;=\;-9\;+\;9[/latex]
[latex]12\;-\;4x[/latex]
[latex]\frac{12}4-\frac{4x}4[/latex]
[latex]x\;=\;3[/latex]
When you see a number held together to an expression by parentheses such as [latex]4(x\;-\;5)[/latex], what operation is implied (addition, subtraction, multiplication, or division)?
The distributive property of multiplication over addition
[latex]a(b\;+\;c)\;=\;a\;\cdot\;b\;+\;a\;\cdot\;c[/latex]
Try it! Simplify the following expressions by distributing.
- [latex]4(x\;-\;5)[/latex]
- [latex]4\left(\frac x4-\frac54\right)[/latex]
- [latex]4\left(\frac12-\frac52y\right)[/latex]
- [latex]12\left(\frac x4-\frac53\right)[/latex]
When you see an expression held together by a fraction bar such as [latex]\frac{x-6}3[/latex], what operation is implied (addition, subtraction, multiplication, or division)?
And how can you undo this operation?
Try it! Clear the following equations of the fractions and then solve.
- [latex]\frac{x-6}3=\frac13[/latex]
- [latex]\frac x4-\frac54=\frac14[/latex] What if the denominators are not all the same number?
- [latex]\frac x2-\frac34=3[/latex]
- [latex]\frac x4-\frac53=1[/latex]
- [latex]\frac12-\frac23y=4[/latex]
- [latex]\frac12-\frac{5y}2=\frac34[/latex] What if the variable shows up on both sides of the equation?
- [latex]8x\;+\;9\;=\;7x\;-\;3[/latex]
- [latex]6(3\;+\;x)\;=\;5(x\;+\;1)[/latex]
- [latex]\frac3{1+x}=2[/latex]
- [latex]\frac{28+x}{7+x}=2[/latex]