1.2 Scientific Notation and Metric Conversions
1.2.1 Prep
An exponential expression looks like:
[latex]a^n[/latex]
Where a: base and n: exponent (or power)
A positive integer exponent tells us how many times to multiply by the base number
For example,
[latex]10^3=10\cdot10\cdot10\\\;\;\;\;\;\;=1,000[/latex]
Write out each exponential expression using multiplication and evaluate.
- [latex]10^1[/latex]
- [latex]10^2[/latex]
- [latex]10^4[/latex]
- [latex]10^7[/latex]
- Discuss what happens when you raise 10 to a positive integer power.
Can you write the following numbers as powers of 10?
- 10,000
- 100,000,000
A negative integer exponent tells us how many times to divide by the base number.
Remember! Division can also be represented with a fraction bar.
For example,
[latex]\begin{array}{l}10^{-3}=1\div10\div10\div10\\=\frac1{10}⋅\frac1{10}⋅\frac1{10}\\=0.001\operatorname{or}\frac1{1,000}\end{array}[/latex]
Write out each exponential expression using division and evaluate.
- [latex]10^{-1}[/latex]
- [latex]10^{-2}[/latex]
- [latex]10^{-4}[/latex]
- [latex]10^{-7}[/latex]
- Discuss what happens when you raise 10 to a negative integer power.
Can you write the following numbers as powers of 10?
- 0.00001
- 0.000000001
In mathematical order of operations, exponents come before multiplication or division. So for:
[latex]5\times10^3[/latex]
You have to evaluate the exponent of 3 before multiplying by the 5.
[latex]5\times1,000[/latex]
[latex]5,000[/latex]
Also keep in mind that multiplication is not always as obvious as the “[latex]\times[/latex]” symbol. The above could also be written as:
[latex]5(10)^3 \text{ or } 5\cdot10^3[/latex]
And it might look more tempting to start by multiplying the 5 and the 10. But resist this urge — start with the exponent!
Follow correct order of operations and evaluate the following.
- [latex]7\times10^2[/latex]
- [latex]3\times10^{-4}[/latex]
- [latex]7.45\times10^6[/latex]
- [latex]3.14\times10^{-6}[/latex]
1.2.2 Preview
Just as multiplication is a shorthand for addition, a positive integer exponent is a shorthand for repeated multiplication of the same number.
[latex]10\times10=10^2[/latex]
Try It!
Write [latex]10\times10\times10\times10\times10[/latex] using an exponent
The following numbers are written using powers of 10.
[latex]\begin{array}{lcccc}2&=&2&=&2\times10^0\\20&=&2\times10&=&2\times10^1\\200&=&2\times10\times10&=&2\times10^2\\2,000&=&2\times10\times10\times10&=&2\times10^3\end{array}[/latex]
Try It!
Write 2, 000, 000 using the pattern above.
Scientific Notation
[latex]\left(\text{a number no less than 1 but less than 10}\right)\times10^{\left(\text{exponent}\right)}[/latex]
Try It!
Convert from scientific to decimal notation.
[latex]7.3\times10^4[/latex]
A negative integer exponent is a shorthand for repeated division of the same number.
[latex]\begin{array}{lr}1\div10=\frac1{10}&=10^{-1}\\1\div10\div10=\frac1{10\times10}&=10^{-2}\\1\div10\div10\div10=\frac1{10\times10\times10}&=10^{-3}\end{array}[/latex]
Try It!
Write [latex]1\div10\div10\div10\div10\div10[/latex]
The following numbers are written using powers of 10.
[latex]\begin{array}{lcc}0.5&=&5\times10^{-1}\\0.05&=&5\times10^{-2}\\0.005&=&5\times10^{-3}\end{array}[/latex]
Try It!
Convert from scientific to decimal notation.
\[4.2\times10^{-5}\]
Search the web to find real-life examples of the following measurements, and compare your answers with classmates.
Measurement | Example |
---|---|
1 m | The length of a guitar |
1 cm | |
1 mm | |
1 hm | The length of a football field |
1 km | |
1 inch | |
1 yard | |
1 mile | |
1 g | The mass of a paperclip |
1 kg | |
[latex]1\mu g[/latex] | Less than a grain of sand |
1 L | |
1 mL | 20 drops of water |
1 quart | |
1 fluid ounce | |
[latex]1cm^2[/latex] | |
[latex]1m^2[/latex] | The area covered by a large opened umbrella |
1 acre |
1.2.3 Class Examples
Scientific Notation
Convert from decimal to scientific notation.
- 35,400,000
- 0.000000009876
Convert from scientific to decimal notation.
- [latex]2.32\times10^6[/latex]
- [latex]5.2\times10^{-3}[/latex]
Metric Measurements
Fill in the table real-life examples of the following measurements, and add more answers from your classmates.
Measurement | Example |
---|---|
1 m | |
1 cm | |
1 mm | |
1 hm | |
1 g | |
1 kg | |
[latex]1\mu g[/latex] | |
1 L | |
1 mL | |
[latex]1cm^2[/latex] | |
[latex]1m^2[/latex] |
Metric Prefixes
Prefix | Mega- | Kilo- | Hecto- | Deka- | Unit | Deci- | Centi- | Milli- | Micro- |
---|---|---|---|---|---|---|---|---|---|
Abbreviation | M | k | h | da | m, g, L | d | c | m | [latex]\mu[/latex] |
No. of units | 1,000,000 | 1,000 | 100 | 10 | 1 | [latex]\frac1{10}[/latex] | [latex]\frac1{100}[/latex] | [latex]\frac1{1000}[/latex] | [latex]\frac1{1000000}[/latex] |
Power of 10 | [latex]10^6[/latex] | [latex]10^3[/latex] | [latex]10^2[/latex] | [latex]10^1[/latex] | [latex]10^0[/latex] | [latex]10^{-1}[/latex] | [latex]10^{-2}[/latex] | [latex]10^{-3}[/latex] | [latex]10^{-6}[/latex] |
Metric System Conversions
Convert
- 50 cm = ______________ m
- 8 kg = ______________ g
- 9.1 kL = ______________ L
- 0.098 g= ______________ mg
- 9.1 mL = ______________ L
- 0.72 km = ______________ mm
- 0.568 kg = ______________ mg
- 0.098 g = ______________ [latex]\mu g[/latex]
- 2000 mg = ______________ [latex]\mu g[/latex]
- [latex]4\;m^2[/latex] = ______________ [latex]cm^2[/latex]
- [latex]0.00025\;hm^3[/latex] = ______________ [latex]cm^3[/latex]
- England is 130.4 billion square meters. Convert this to square kilometers.
1.2.4 Homework
Use a calculator to simplify. Write answers in scientific notation rounded to three digits.
- [latex]-1.53\times10^3+4.57\times10^3[/latex]
- [latex]1.25\times10^{-6}-4.79\times10^{-3}[/latex]
- [latex]\left(1.24\times10^3\right)\left(5.79\times10^{-9}\right)[/latex]
- [latex]\frac{5.47\times10^3}{1.76\times10^{-3}}[/latex]
- Answer the following.
- Find an example of a number in the real world that is written in scientific notation. (Be sure to include its context and its units.)
- Write this number in decimal notation.
- Explain when it might be advantageous to write this number in scientific notation.
Perform the following metric conversions, and write your answer in scientific notation.
- A nurse needs to give a patient 0.0025 grams of Valium.
- Convert this dosage to scientific notation.
- Convert this dosage to mg.
- Convert this dosage to [latex]\mu g[/latex]
- Which way of expressing this dosage is most appropriate, and why?
Convert. Then write your answer in scientific notation.
- 0.5 L = ________________ mL
- 16cm = ________________ mm
- 104 km = ________________ cm
- [latex]0.048\;m^2[/latex] = ________________ [latex]cm^2[/latex]
- 1.98 g = ________________ kg
- 2500 cm = ________________ km
- [latex]160\;cm^3[/latex] = ________________ [latex]mm^3[/latex]
- 12 L = ________________ ML
- Spain is [latex]504,646\;km^2[/latex]. France is [latex]640,679,000,000\;m^2[/latex]. Which country is larger and by how much?