3.5: Properties of Logarithms
Learning Objectives
- Evaluate Logarithms Whose base is Neither 10 Nor e.
- Write a Logarithmic Expression as a Sun of Difference of Logarithms (Expand logarithms).
- Write a Logarithmic Expression as a Single Logarithm (Condense logarithms).
Evaluate Logarithms Whose base is Neither 10 Nor e
Change-of-Base Formula
[latex]If\;a,\;b,\;x\in\mathbb{R}\;and\;a,\;b,\;x>0\;and\;a,\;b\;\neq1,[/latex]
[latex]\log_b\left(x\right)=\frac{\log_a\left(x\right)}{\log_a\left(b\right)}=\frac{\log\left(x\right)}{\log\left(b\right)}=\frac{\ln\left(x\right)}{\ln\left(b\right)}[/latex]
If the logarithmic base is neither 10 nor e, we need to convert it to a common base, such as 10 or e, to evaluate the logarithm.
Example 3.5-1-1: Use the Change-of-Base Formula and a calculator to evaluate the logarithm, round it to nearest hundredth.
[latex]\log_{1.5}\left(38\right)[/latex]
Key
Example 3.5-1-1: Use the Change-of-Base Formula and a calculator to evaluate the logarithm, round it to nearest hundredth.
[latex]\log_{1.5}\left(38\right)[/latex]
[latex]\log_b\left(x\right)=\frac{\log_a\left(x\right)}{\log_a\left(b\right)}=\frac{\log\left(x\right)}{\log\left(b\right)}=\frac{\ln\left(x\right)}{\ln\left(b\right)}[/latex]
![]() |
Based on the formula, we can select either the natural log or the common log or log with a same base to change the base of the log in the original question. Remember, you only need to use one of them.
If use natural log: [latex]\log_b\left(x\right)=\frac{\ln\left(x\right)}{\ln\left(b\right)}[/latex] |
We have
[latex]{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol x}{\color[rgb]{0.5, 0.0, 0.5}\mathbf\rightarrow}{\color[rgb]{0.5, 0.0, 0.5}\mathbf38}[/latex]
[latex]{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol b}{\color[rgb]{0.0, 0.0, 1.0}\mathbf\rightarrow}{\color[rgb]{0.0, 0.0, 1.0}\mathbf1}{\color[rgb]{0.0, 0.0, 1.0}\mathbf.}{\color[rgb]{0.0, 0.0, 1.0}\mathbf5}[/latex]
[latex]\log_{{\color[rgb]{0.0, 0.0, 1.0}\mathbf1}{\color[rgb]{0.0, 0.0, 1.0}\mathbf.}{\color[rgb]{0.0, 0.0, 1.0}\mathbf5}}\left({\color[rgb]{0.5, 0.0, 0.5}\mathbf38}\right)=\frac{\ln\left(38\right)}{\ln\left(1.5\right)}=8.9713913404...\approx8.97[/latex]

Thinking: what if we decide to use common log instead of natural log?
If we use common log: [latex]\log_b\left(x\right)=\frac{\log\left(x\right)}{\log\left(b\right)}[/latex]
Then we have
[latex]\log_{1.5}\left(38\right)=\frac{\log\left(38\right)}{\log\left(1.5\right)}=8.9713913404...\approx8.97[/latex]
Your Turn
Practice 3.5-1-1
Write a Logarithmic Expression as a Sun of Difference of Logarithms (Expand logarithms)
Product Rule for Logarithms
Given any real number [latex]x[/latex] and positive real numbers [latex]M, N,[/latex] and [latex]b[/latex], where [latex]b\neq1[/latex], we will show
[latex]\log_b\left(MN\right)=\log_b\left(M\right)+\log_b\left(N\right)[/latex]
Let [latex]m=\log_bM[/latex] and [latex]n=\log_bN[/latex]. In exponential form, these equations are [latex]b^m=M[/latex] and [latex]b^n=N[/latex]. It follows that
[latex]\log_b\left(MN\right)[/latex] [latex]=\log_b\left(b^mb^n\right)[/latex] | Substitute for [latex]M[/latex] and [latex]N[/latex]. |
[latex]=\log_b\left(b^{m+n}\right)[/latex] |
Apply the product rule for exponents. |
[latex]=m+n[/latex] |
Apply the inverse property of logs. |
[latex]=\log_b\left(M\right)+\log_b\left(N\right)[/latex] |
Substitute for [latex]m[/latex] and [latex]n[/latex]. |
[latex]\log_b\left(M\cdot N\right)=\log_b\left(M\right)+\log_b\left(N\right)[/latex]
Example 3.5-2-1: Using the product rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(3x\right)[/latex]
Key
Example 3.5-2-1: Using the product rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(3x\right)[/latex]
Since: [latex]\log_b\left(M\cdot N\right)=\log_b\left(M\right)+\log_b\left(N\right)[/latex]
[latex]\log_b\left(3x\right)=\log_b\left(3\right)+\log_b\left(x\right)[/latex]
Quotient Rule for Logarithms
Given any real number [latex]x[/latex] and positive real numbers [latex]M, N,[/latex] and [latex]b[/latex], where [latex]b\neq1[/latex], we will show
[latex]\log_b\left(\frac MN\right)=\log_b\left(M\right)-\log_b\left(N\right)[/latex]
Let [latex]m=\log_bM[/latex] and [latex]n=\log_bN[/latex]. In exponential form, these equations are [latex]b^m=M[/latex] and [latex]b^n=N[/latex]. It follows that
[latex]\log_b\left(\frac MN\right)[/latex][latex]=\log_b\left(\frac{b^m}{b^n}\right)[/latex] | Substitute for [latex]M[/latex] and [latex]N[/latex]. |
[latex]=\log_b\left(b^{m-n}\right)[/latex] | Apply the quotient rule for exponents. |
[latex]=m-n[/latex] | Apply the inverse property of logs. |
[latex]=\log_b\left(M\right)-\log_b\left(N\right)[/latex] | Substitute for [latex]m[/latex] and [latex]n[/latex]. |
[latex]\log_b\left(\frac MN\right)=\log_b\left(M\right)-\log_b\left(N\right)[/latex]
Example 3.5-2-2: Using the quotient rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(\frac3x\right)[/latex]
Key
Example 3.5-2-2: Using the quotient rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(\frac3x\right)[/latex]
Since: [latex]\log_b\left(\frac MN\right)=\log_b\left(M\right)-\log_b\left(N\right)[/latex]
[latex]\log_b\left(\frac3x\right)=\log_b\left(3\right)-\log_b\left(x\right)[/latex]
Power Rule for Logarithms
We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such as [latex]x^2[/latex] ? One method is as follows:
[latex]\log_b\left(x^2\right)=\log_b\left(x\cdot x\right)[/latex]
[latex]=\log_b\left(x\right)+\log_b\left(x\right)[/latex]
[latex]=2\log_bx[/latex]
[latex]\log_b\left(x^r\right)=r\cdot\log_b\left(x\right)[/latex]
Example 3.5-2-3: Using the power rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(x^8\right)[/latex]
Key
Example 3.5-2-3: Using the power rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(x^8\right)[/latex]
Since: [latex]\log_b\left(x^r\right)=r\log_b\left(x\right)[/latex]
[latex]\log_b\left(x^8\right)=8\log_b\left(x\right)[/latex]
Steps to expand
Expand:
- quotient (change to “[latex]-[/latex]”)
- product (change to “[latex]+[/latex]”)
- power (bring the power down)
Example 3.5-2-4: Using the product, quotient, and power rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(\frac{3x^8}{5yz}\right)[/latex]
Key
Example 3.5-2-4: Using the product, quotient, and power rules for logarithms, expand the logarithmic expressions.
To check if it’s fully expanded:
- No fractions,
- No multiplication,
- No exponents.
[latex]\log_b\left(\frac{3x^8}{5yz}\right)[/latex]
- quotient (change to “[latex]-[/latex]”)
[latex]\log_b\left(\frac{3x^8}{5yz}\right)=\log_b\left(3x^8\right)-\log_b\left(5yz\right)[/latex]
- product (change to “[latex]+[/latex]”)
[latex]\log_b\left(3x^8\right)-\log_b\left(5yz\right)=\left(\log_b\left(3\right)+\log_b\left(x^8\right)\right)-\left(\log_b\left(5\right)+\log_b\left(y\right)+\log_b\left(z\right)\right)[/latex]
- power (bring the power down)
[latex]\begin{array}{c}\left(\log_b\left(3\right)+\log_b\left(x^{\color[rgb]{0.0, 0.0, 1.0}\mathbf8}\right)\right)-\left(\log_b\left(5\right)+\log_b\left(y\right)+\log_b\left(z\right)\right)\\=\left(\log_b\left(3\right)+{\color[rgb]{0.0, 0.0, 1.0}\mathbf8}\log_b\left(x\right)\right)-\left(\log_b\left(5\right)+\log_b\left(y\right)+\log_b\left(z\right)\right)\end{array}[/latex]
Last step: simplify
[latex]\begin{array}{c}\left(\log_b\left(3\right)+8\log_b\left(x\right)\right){\color[rgb]{0.5, 0.0, 0.5}\mathbf-}\left(\log_b\left(5\right)+\log_b\left(y\right)+\log_b\left(z\right)\right)\\=\log_b\left(3\right)+8\log_b\left(x\right){\color[rgb]{0.5, 0.0, 0.5}\mathbf-}\log_b\left(5\right){\color[rgb]{0.5, 0.0, 0.5}\mathbf-}\log_b\left(y\right){\color[rgb]{0.5, 0.0, 0.5}\mathbf-}\log_b\left(z\right)\end{array}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol d}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol i}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol s}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol t}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol r}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol i}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol b}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol u}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol t}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol e}{\color[rgb]{0.5, 0.0, 0.5}\mathbf\;}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol t}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol h}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol e}{\color[rgb]{0.5, 0.0, 0.5}\mathbf\;}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol n}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol e}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol g}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol a}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol t}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol i}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol v}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol e}{\color[rgb]{0.5, 0.0, 0.5}\mathbf\;}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol s}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol i}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol g}{\color[rgb]{0.5, 0.0, 0.5}\boldsymbol n}[/latex]
Answer:
[latex]\log_b\left(3\right)+8\log_b\left(x\right)-\log_b\left(5\right)-\log_b\left(y\right)-\log_b\left(z\right)[/latex]
Your Turn
Practice 3.5-2-1
Condense
Condensing means combining logarithms. It is the reverse process of expanding. We apply the rules in this order: power, quotient, then product.
- [latex]\log_b\left(\frac xy\right)=\log_b\left(x\right)-\log_b\left(y\right)[/latex]
- [latex]\log_b\left(x\cdot y\right)=\log_b\left(x\right)+\log_b\left(y\right)[/latex]
- [latex]\log_b\left(x^r\right)=r\cdot\log_b\left(x\right)[/latex]
The rules above can be applied from left to right to expand, or from right to left to condense.
Steps:
- power (coefficient)
- product (“[latex]+[/latex]”)
- quotient (“[latex]-[/latex]”)
Example 3.5-3-1: Using the product, quotient, and power rules for logarithms, condense the logarithmic expressions.
[latex]\log_b\left(x\right)+8\log_b\left(y\right)-\log_b\left(7\right)-3\log_b\left(z\right)[/latex]
Key
Example 3.5-3-1: Using the product, quotient, and power rules for logarithms, condense the logarithmic expressions.
[latex]\log_b\left(x\right)+8\log_b\left(y\right)-\log_b\left(7\right)-3\log_b\left(z\right)[/latex]
- power (coefficient)
[latex]\log_b\left(x\right)+{\color[rgb]{0.5, 0.0, 0.5}\mathbf8}\log_b\left(y\right)-\log_b\left(7\right)-{\color[rgb]{0.5, 0.0, 0.5}\mathbf3}\log_b\left(z\right)[/latex]
[latex]\log_b\left(x\right)+\log_b\left(y^{\color[rgb]{0.5, 0.0, 0.5}\mathbf8}\right)-\log_b\left(7\right)-\log_b\left(z^{\color[rgb]{0.5, 0.0, 0.5}\mathbf3}\right)[/latex]
- product (“[latex]+[/latex]”)
[latex]\log_b\left(xy^8\right)-\log_b\left(7\right)-\log_b\left(z^{\color[rgb]{0.5, 0.0, 0.5}\mathbf3}\right)[/latex]
- quotient (“[latex]-[/latex]”)
All negative logarithmic terms are in the denominator
[latex]\log_b\left(xy^8\right){\color[rgb]{0.0, 0.0, 1.0}\mathbf-}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol l}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol o}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol g}_{\color[rgb]{0.0, 0.0, 1.0}\mathbf b}\mathbf{\color[rgb]{0.0, 0.0, 1.0}\left(7\right)}{\color[rgb]{0.0, 0.0, 1.0}\mathbf-}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol l}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol o}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol g}_{\color[rgb]{0.0, 0.0, 1.0}\mathbf b}\mathbf{\color[rgb]{0.0, 0.0, 1.0}\left(z^3\right)}[/latex]
[latex]=\log_b\left(\frac{xy^8}{{\color[rgb]{0.0, 0.0, 1.0}\mathbf7}{\color[rgb]{0.0, 0.0, 1.0}\boldsymbol z}^{\color[rgb]{0.0, 0.0, 1.0}\mathbf3}}\right)[/latex]
Answer: [latex]\log_b\left(\frac{xy^8}{7z^3}\right)[/latex]